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Abstract—Water scarcity in Egypt has undoubtedly grown to become a serious problem. Mismanagement of water resources, ineffective irrigation 

techniques, and inexact operation and management of irrigation canals are some factors leads to water waste in Egypt. The adjustment of hydraulic 

structures’ gates at intakes of irrigation canals leads to transitional unsteady flow at beginning of operation until reaches another steady flow. Unsteady 

open channels flow can be simulated using routing problems and operation type problems. St.Venant equations are used in routing schemes to find the 

discharge and water level above certain datum along the channel in future time. In operation-type problems, the same equations are used to determine 

the inflow hydrographs at channel’s intakes which achieve the prescribed hydrographs at the end section of channel. Operation-type problems are also 

referred to as inverse calculation of unsteady open channels flow. A new inverse kinematic scheme is presented herein to control unsteady flow in open 

channel.  Momentum equation and continuity equation for kinematic wave are combined to derive a kinematic wave equation with discharge Q as 

dependent variable. The inverse kinematic algorithm was applied to get a solution of kinematic wave equation based on the approximation of partial 

derivatives and coefficients of Preissmann scheme. The inflow hydrographs are obtained by moving in reverse in the direction of time at first and then 

backward in the direction of space. The calculated upstream hydrographs found using inverse kinematic scheme revealed identical accuracy as those 

obtained using inverse explicit scheme. To examine the accuracy of calculated inflow hydrograph by inverse kinematic method, it was used after that as 

upstream boundary condition for Verwy variant of Preissmann scheme. The calculated downstream hydrographs produced approximately the required 

water demand hydrograph. The mathematical model of Verwy variant of Preissmann scheme solves complete governing equations in routing problem.  

 

 
Index Terms— Unsteady open channel flow, St. Venant equations, inverse kinematic scheme, inverse explicit scheme, Preissmann scheme, routing 

problems, Operation problems. 

——————————      —————————— 

1 INTRODUCTION 

 

ater uses in Egypt have exceeded the available 

resources due to rapid population growth, increased 

food demand, development and renewal of the industrial 

base, and enhanced standards of living. 

Ethiopian Renaissance Dam may decrease Egypt's share of 

Nile water. So, Egyptians must rationalize their water usage 

to overcome water shortage problems in the future. 

Barrages on river and regulators on canals have gates to 

organize the volume of flow released through their structures. 

Accurate water management in irrigation systems is 

important to maximize benefits to water consumers, 

minimizing waste of water, and expecting variation in water 

demand due to weather conditions and agriculture 

requirements. 

Precise organize of water flow in canals became essential 

because of increasing water demands. Operation on irrigation 

canals aims to deliver fair water to users. Numerical models 

were developed for operation-type problems [2}, [6], [7], [10], 

[11], [13], [14], [15] to estimate the upstream inflow which 

yields the required downstream hydrograph.  

A transitional gate stroking control technique [2],[16], 

utilized to organize gate movements and water released to 

provide water demand at downstream. The gate stroking 

technique uses more complicated characteristics method. The 

finite difference techniques provide easier solution to the 

governing equations of unsteady open channel flow.  

The finite difference schemes are divided into explicit 

numerical schemes and implicit numerical schemes 

[1],[3],[5],[8],[12]. A rectangular time-space grid is used in 

explicit numerical schemes. The unknown discharges and 

water depths at grid points on future time are calculated 

using known discharges, water depths and conditions on 

current time line or on both current and previous time lines. 

Implicit type numerical schemes calculate the unknown 

discharges and water depths at advanced time levels on time-

space rectangular grid by preparing a number of equations 

equal to the number of unknown variables and solving these 

equations simultaneously.  

 Preissmann type implicit schemes are commonly used to 

solve St. Venant equations. Large time steps can be used in 

implicit schemes due to its stability, but time step may be 

restricted to attain more accurate results. On the contrary of 

explicit numerical schemes, the time step in implicit schemes 

is not constrained by Courant condition [1],[3],[5],[8].  

Inverse implicit scheme and inverse explicit scheme are the 

finite difference schemes that recently used to simulate the 
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inverse problem. The implicit scheme use grid rotated 90o in 

the space-time grid [2]. In this implicit scheme, the prescribed 

discharges and depths at end section of channel are utilized as 

initial condition while the known variables at initial 

computational time and final computational time can be water 

depth profile or discharge profile. 

Inverse explicit scheme mentioned in Liu, et al. 1992 [7] is 

explicit scheme use the discretization of Preissmann scheme. 

The computation in this explicit scheme initiates at top-right 

junction of time-space plane. The values of unknowns are 

found by moving in reverse in the direction of space at first 

and then in reverse in the direction of time. The problem of 

the inverse explicit scheme can be solved by moving in 

reverse in the direction of time at first and after that in reverse 

in the direction of space [14]. 

A new inverse kinematic scheme is explained in this 

research. The scheme is finite difference scheme using the 

approximation of partial derivatives and coefficient of 

Preissmann type scheme to calculate the inflow hydrographs. 

Specified flow hydrograph at channel’s end is used as initial 

conditions in this scheme. The computed results using this 

scheme exhibited more stability than that calculated using 

inverse explicit scheme. Verwy variant of Preissmann implicit 

scheme was used after that to calculate the downstream 

hydrographs. In this scheme, the calculated upstream 

discharges profile using inverse kinematic scheme was 

utilized as upstream condition. The calculated hydrographs at 

end section using Verwy variant of Preissmann scheme 

approximately reproduced the required hydrograph. 

 

2  ONE DIMENSIONAL SAINT VENANT EQUATIONS 
 

St. Venant equations in conservation and non-conservation 

forms are used to simulate various one-dimensional routing 

models. Assuming no lateral outflow, St. Venant equations are 

written as: 
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Non-conservation form (unit width element)  
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where: A = wetted cross section area; b = top width of wetted 
area; g = gravitational acceleration; Q = discharge through 
cross section area;  y = flow depth; V = velocity of flow; t = 
time; x = space; S0= channel bed slope  and Sf  = friction slope.  

Alternative routing models of flow are simulated by using 
full continuity equation with all or some terms of momentum 
equation. The mathematical models of dynamic wave take 
acceleration and pressure terms in momentum equation into 
account, while the mathematical models of kinematic wave 
ignore these terms. Kinematic wave scheme assumes S0= Sf   
and the friction forces balance the gravity forces [3], [4], [9]. 

Continuity and momentum equations in the kinematic 
wave scheme are written as: 
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 S0 = Sf         (6) 
 

Momentum equation (6) can be written as: 
 

 A = α Q m    (7) 
 

Using Manning’s equation, m = 0.6 and α = [
𝑛𝑃2/3

√𝑆0
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To eliminate A from equation (5), differentiate equation (7) 
to get: 
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3  IMPLICIT TYPE PREISSMANN ROUTING SCHEME 
  

Preissmann implicit scheme is extensively used as a result 

of its simple structure at all grid points with flow and 

geometrical variables [1, 3, 4, and 7].   

The grid of Preissmann scheme is illustrated in Fig.1. The 

derivatives in equations (1) and (2) can be substituted as: 
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where ),( tkxiff k
i  ; t = grid interval along t-axis; 

x = grid interval along x-axis;   = weighting distribution 

coefficient related to space and  = weighting distribution 

coefficient related to time, 0  1.  

Verwey [5, and12], used a different approximation for term  

∂
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) and resistance term 
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 in equation (3), as 

follows:  
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  (3.88) 
The superscripts k+1/2 means that the function is 

computed between two time levels kt and (k+1)t.   

In the above terms, the variables at time level k are known 

and the variables at time levels k+1 are unknowns. 

Substituting the above terms in equations (1) and (3) 

produces: 
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Coefficients L, M, N, O, W, L’, M’, N’, O’, and W’ in 

equations (15) and (16) can be computed using known 

discharges and water depths at time k.  Equations (15) and 

(16) create a linear algebraic system of equations containing 

four unknowns. There are I points on row k+1, and I-1 meshes 

produces a number of equations equal 2(I-1) to calculate 2I 

unknowns. Two extra equations or values of two unknowns at 

Boundary make the number of equations equal to the number 

of unknowns.  Any method for solution of linear algebraic 

equations can be applied to solve these equations. The double-

sweep method [4, 7] is very effective method decreases the 

time required to solve the above system of equations. 

 
 

Fig. 1. Computational Grid for Verwy’s variant of Preissmann 
Scheme. 

 

4  INVERSE KINEMATIC SCHEME 
 

The solution of the kinematic wave equation (9) can be 

established numerically using finite difference methods. For 

inverse kinematic scheme (operation type kinematic scheme), 

values of discharges and water depths at channel’s end are 

specified. Inverse kinematic routing scheme based on the 

approximation of partial derivatives and coefficient of 

Preissmann scheme as mentioned in equations (17), (18), and 

(19). Specifying Qi , and yi between two consecutive time at 

downstream section, the discharge and water depth at time (k-

1) is found by moving in reverse in time at first and after that 

in reverse in space as illustrated in Fig.2. In this scheme, 

derivatives in equation (9) are expressed as: 
 

 
Fig. 2. Computational Grid for Inverse scheme. 

 

A flow chart for inverse kinematic scheme is given in Fig. 3. 
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Fig. 3. Operation type kinematic scheme flow chart. 

 

5  INVERSE EXPLICIT SCHEME 
 

For inverse (backward) explicit scheme (operation 

problems), discharges and water depths at end section are 

specified. The operation problem is an explicit finite difference 

method use the discretization of Preissmann scheme, 

equations (17), (18), and (19). The use of the finite difference 

approximations produces a system of two algebraic equations 

containing two unknowns. Knowing Qi , and yi between two 

consecutive time at downstream section, discharges and water 

depths at time (K-1)  can be attained by moving  firstly in 

reverse in direction of time and after that in reverse in 

direction of space as clarified in fig. 2..  
 

6 APPLICATION OF INVERSE KINEMATIC SCHEME  
 

The validity of operation type kinematic scheme was 

investigated by example presented in Liu, et al. 1992 [7, 13, 

and 14]. The open channel in this example is trapezoidal 

channel with length 2.5 km, width 5.0m, longitudinal bottom 

slope equal 0.001, and side slopes 1.5H to 1V. The channel has 

Manning’s roughness coefficient n equal to 0.025, and an 

overflow weir with free flow condition fixed at downstream 

end. The discharge rises at channel’s end from 5.0m3/s to10.0 

m3/s in one hour, and then the discharge remains constant 

at10 m3/s for next two hours, after that reduced again to5.0 

m3/s in one hour. The calculated discharge and water depth 

hydrographs at upstream section are illustrated in Figs. 4 and 

5. These hydrographs were determined by using required 

discharges and water depths at channel’s end as initial 

condition. 

To simulate flow in this channel with Verwy’s variant of 

Preissmann implicit scheme, the calculated discharge 

hydrograph at channel’s intake was considered as upstream 

boundary condition and the weir equation fixed at 

downstream section was used to calculate downstream 

boundary condition. Using this implicit scheme, the calculated 

downstream hydrographs illustrated in Figs. 4 and 5 show 

good accuracy compared with the required hydrographs. 
 

7  NUMERICAL SIMULATION AND RESULTS ANALYSIS 
 

Backward explicit scheme and operation type kinematic 

scheme were used separately to simulate the flow in the above 

described channel. The calculated discharge and depth 

hydrographs at channel intake are illustrated in Figs. 4 and 5. 

Space step Δx =100 m, time step Δt =100 s, weighting 

coefficient   = 0.9, and weighting coefficient φ = 1.0 were 

utilized in operation type kinematic scheme, while Δx =100 m, 

Δt =600 s, weighting coefficient   = 1.0 and weighting 

coefficient φ = 0.5 were utilized in backward explicit scheme. 

The calculated results using operation type kinematic scheme 

and backward explicit scheme indicate nearly similar 

accuracy. 

The simulated discharge hydrograph computed at 

channel’s intake by operation type kinematic scheme was 

utilized after that in Verwy’s variant of Preissmann scheme as 

upstream boundary condition to computed hydrographs at 

channel’s end.  Figs. 4 and 5 indicate that the simulated 

downstream hydrographs were close to the required 

hydrographs. 
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The effect of space step Δx, time step Δt, weighting 

coefficient θ, and weighting coefficient φ on the performance 

of inverse kinematic scheme was tested. 

The simulated upstream hydrographs using inverse 

kinematic scheme with Δx =100 m, 250 m, and 500 m are 

clarified in Figs. 6 and 7.The results indicates that the 

influence of space interval Δx on the simulated hydrographs is 

insignificant.  
 

 

Fig.4. Simulated discharge hydrographs using operation type 

kinematic scheme and backward explicit scheme. 

    

Fig.5. Simulated water depth hydrographs using operation 

type kinematic scheme and backward explicit scheme. 

The simulated upstream hydrographs, using Δt =100 sec, 

300 sec, and 600 sec are clarified in Figs 8 and 9. The result 

indicates that Δt has very small influence on the computed 

hydrographs. 

The results attained using various values of weighting 

coefficient   in inverse kinematic scheme are clarified in Figs. 

10 and 11. The simulated upstream hydrograph using inverse 

kinematic scheme with    = 0.9 show approximately similar 

accuracy as the computed upstream hydrograph attained 

using inverse explicit scheme.  
 

 
Fig.6. Simulated upstream discharge hydrographs using 

operation type kinematic scheme with different Δx. 

 

 

 
 

Fig.7. Simulated upstream water depth hydrographs using 

operation type kinematic scheme with different Δx. 
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Fig.8. Simulated upstream discharge hydrographs using 

operation type kinematic scheme with different Δt. 

 

 

 
Fig.9. Simulated upstream water depth hydrographs using 

operation type kinematic scheme with different Δt. 

 
 

 

 

Fig.10. Simulated upstream discharge hydrographs using 

operation type kinematic scheme with different values of  . 

 

 

 
Fig.11. Simulated upstream water depth hydrographs using 

operation type kinematic scheme with different values of  . 
 

The simulated upstream hydrograph using inverse 

kinematic scheme with φ = 1.0 show approximately similar 

accuracy as that attained using inverse explicit scheme as 

illustrated in Figs. 12 and 13. 
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Fig.12. Simulated upstream discharge hydrographs using 

operation type kinematic scheme with different values of φ. 

 

 

 
Fig.13. Simulated upstream water depth hydrographs using 

operation type kinematic scheme with different values of φ. 

 

8  CONCLUSIONS 
 

New finite difference inverse kinematic scheme has been 

presented herein to organize unsteady flow in open channels. 

The inverse kinematic scheme is numerically stable. This 

method compute the inflow hydrograph at canal’ intake to 

achieve water demands at downstream end of canal.  

 The influence of space step Δx, time step Δt, weighting 

coefficient , and weighting coefficient φ on scheme 

performance was tested. The results show that space interval 

Δx has no effect on the simulated hydrographs. Also, the time 

interval Δt has very small effect on the simulated 

hydrographs. The simulated upstream hydrographs found 

using inverse kinematic scheme with    = 0.9 and φ = 1.0 

display good agreement with the simulated upstream 

hydrographs obtained using inverse explicit scheme with   = 

1.0 andφ = 0.5. The attained hydrograph at canal's intake 

using the inverse kinematic scheme was used after that as 

upstream condition in Verwy’s variant of Preissmann implicit 

scheme. The produced discharge and water depth 

hydrographs at channel’s end using this scheme were very 

close to the required hydrographs. 
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NOTATION 
 
The following symbols are used in this paper: 

 

 

A       =  wetted cross-sectional area;  
b        =  wetted top width;  
f        =  general function; 
g       =  gravitational constant;  
i        =  cross-section index; 
k       =  time-level index;  
n       = Mannings roughness coefficient; 
Q      =  discharge (through A); 
P       = wetted perimeter of cross section; 
S0      =  bottom slope of the channel; 
Sf       =  friction slope; 
t        =  time; 
V      =  velocity of flow; 
x       =  space;  
y       =  depth of flow ; 

t     =  time step; 

x     =  space step; 
φ       =  a weighting coefficient for distributing terms in space; 
and 

       =  a weighting coefficient for distributing terms in time. 
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